Package 'trending'

Title: Model Temporal Trends
Description: Provides a coherent interface to multiple modelling tools for fitting trends along with a standardised approach for generating confidence and prediction intervals.
Authors: Tim Taylor [aut] , Dirk Schumacher [ctb], Thibaut Jombart [ctb, cre]
Maintainer: Thibaut Jombart <[email protected]>
License: MIT + file LICENSE
Version: 0.1.0
Built: 2024-12-31 03:32:05 UTC
Source: https://github.com/reconverse/trending

Help Index


Accessors generics

Description

Generics for accessing model information.

Usage

get_result(x, ...)

## Default S3 method:
get_result(x, ...)

## S3 method for class 'trending_fit'
get_result(x, ...)

## S3 method for class 'trending_predict'
get_result(x, ...)

## S3 method for class 'trending_fit_tbl'
get_result(x, ...)

## S3 method for class 'trending_predict_tbl'
get_result(x, ...)

get_warnings(x, ...)

## Default S3 method:
get_warnings(x, ...)

## S3 method for class 'trending_fit'
get_warnings(x, ...)

## S3 method for class 'trending_predict'
get_warnings(x, ...)

## S3 method for class 'trending_fit_tbl'
get_warnings(x, ...)

## S3 method for class 'trending_predict_tbl'
get_warnings(x, ...)

get_errors(x, ...)

## Default S3 method:
get_errors(x, ...)

## S3 method for class 'trending_fit'
get_errors(x, ...)

## S3 method for class 'trending_predict'
get_errors(x, ...)

## S3 method for class 'trending_fit_tbl'
get_errors(x, ...)

## S3 method for class 'trending_predict_tbl'
get_errors(x, ...)

get_fitted_model(x, ...)

## Default S3 method:
get_fitted_model(x, ...)

## S3 method for class 'trending_fit'
get_fitted_model(x, ...)

## S3 method for class 'trending_fit_tbl'
get_fitted_model(x, ...)

get_fitted_data(x, ...)

## Default S3 method:
get_fitted_data(x, ...)

## S3 method for class 'trending_fit'
get_fitted_data(x, ...)

## S3 method for class 'trending_fit_tbl'
get_fitted_data(x, ...)

get_formula(x, ...)

## Default S3 method:
get_formula(x, ...)

## S3 method for class 'trending_model'
get_formula(x, ...)

## S3 method for class 'trending_fit'
get_formula(x, ...)

## S3 method for class 'trending_fit_tbl'
get_formula(x, ...)

get_response(x, ...)

## Default S3 method:
get_response(x, ...)

## S3 method for class 'trending_model'
get_response(x, ...)

## S3 method for class 'trending_fit'
get_response(x, ...)

## S3 method for class 'trending_fit_tbl'
get_response(x, ...)

## S3 method for class 'trending_prediction'
get_response(x, ...)

## S3 method for class 'trending_predict'
get_response(x, ...)

## S3 method for class 'trending_predict_tbl'
get_response(x, ...)

get_predictors(x, ...)

## Default S3 method:
get_predictors(x, ...)

## S3 method for class 'trending_model'
get_predictors(x, ...)

## S3 method for class 'trending_fit'
get_predictors(x, ...)

## S3 method for class 'trending_fit_tbl'
get_predictors(x, ...)

## S3 method for class 'trending_prediction'
get_predictors(x, ...)

## S3 method for class 'trending_predict'
get_predictors(x, ...)

## S3 method for class 'trending_predict_tbl'
get_predictors(x, ...)

get_estimate(x, ...)

## Default S3 method:
get_estimate(x, ...)

## S3 method for class 'trending_prediction'
get_estimate(x, ...)

## S3 method for class 'trending_predict'
get_estimate(x, ...)

## S3 method for class 'trending_predict_tbl'
get_estimate(x, ...)

Arguments

x

An R object.

...

Not currently used by any methods.

Details

Methods are provided for trending_model, trending_fit, trending_fit_tbl, trending_predict, and trending_predict_tbl objects.

Value

  • get_result(): the captured output.

  • get_warnings(): the captured warnings.

  • get_errors(): the captured warnings.

  • get_fitted_data: The underlying data used to fit the model.

  • get_fitted_model(): The underlying fitted model.

  • get_formula(): the formula used to model temporal trends.

  • get_response(): the response variable of the underlying model.

  • get_predictors(): the predictor variable(s) of the underlying model.

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
fitted_poisson <- fit(poisson_model, dat)

get_fitted_model(fitted_poisson)
get_formula(fitted_poisson)
get_response(fitted_poisson)
get_predictors(fitted_poisson)

Fit generic

Description

fit() is a generic to fit a specified model.

Usage

fit(x, data, ...)

## Default S3 method:
fit(x, data, ...)

Arguments

x

An R object

data

A data frame containing the data to fit.

...

Arguments passed to underlying methods.

Value

The value returned depends on the class of the input argument.

Author(s)

Tim Taylor

See Also

fit.trending_model() and fit.list()

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)

poisson_model <- glm_model(y ~ x , family = poisson)
negbin_model <- glm_nb_model(y ~ x)

fit(poisson_model, dat)
fit(negbin_model, dat)
fit(list(poisson_model, negbin_model), dat)
fit(list(pm = poisson_model, nm = negbin_model), dat)

Fit method list object

Description

Fits a list of trending_model objects to the given input data.

Usage

## S3 method for class 'list'
fit(x, data, ...)

Arguments

x

A list of trending_model objects

data

A data frame containing the data to fit.

...

Not currently used.

Value

A trending_fit_tbl object which is a tibble subclass with one row for each model and entries:

  • model_name (optional): If the input is a named list then the name is extracted.

  • result: the resulting fit from calling the underlying model directly, i.e.

    • lm_model: a fitted model object of class lm

    • glm_model: a fitted model object of class glm

    • glm_nb_model: a fitted model object of class negbin

    • brm_model: An object of class brmsfit

    NULL if fitting fails.

  • warnings: any warnings generated during fitting

  • errors: any errors generated during fitting

Author(s)

Tim Taylor

See Also

fit.trending_model()

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = poisson)
negbin_model <- glm_nb_model(y ~ x)

fit(list(poisson_model, negbin_model), dat)
fit(list(pm = poisson_model, nm = negbin_model), dat)

Fit method for trending_model objects

Description

Fits the specified model to the input data

Usage

## S3 method for class 'trending_model'
fit(x, data, as_tibble = TRUE, ...)

Arguments

x

An R object

data

A data frame containing the data to fit.

as_tibble

Should the output be converted to a tibble subclass.

...

Not currently used.

Value

If as_tibble = FALSE, then a trending_fit object is returned. This is a list subclass with entries:

  • result: the resulting fit from calling the underlying model directly, i.e.

    • lm_model: a fitted model object of class lm

    • glm_model: a fitted model object of class glm

    • glm_nb_model: a fitted model object of class negbin

    • brm_model: An object of class brmsfit

    NULL if fitting fails.

  • warnings: any warnings generated during fitting

  • errors: any errors generated during fitting

If as_tibble = TRUE, a trending_fit_tbl object which is a tibble subclass with one row for each model and columns 'result', 'warnings' and 'errors' with contents as above.

Author(s)

Tim Taylor

See Also

fit.list()

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)

poisson_model <- glm_model(y ~ x , family = poisson)
negbin_model <- glm_nb_model(y ~ x)

fit(poisson_model, dat)
fit(negbin_model, dat)
fit(list(poisson_model, negbin_model), dat)
fit(list(pm = poisson_model, nm = negbin_model), dat)

Predict method for trending_model objects

Description

Adds estimated values and associated confidence and/or prediction intervals to data based on trending_model fit.

Usage

## S3 method for class 'list'
predict(
  object,
  data,
  name = "estimate",
  alpha = 0.05,
  add_ci = TRUE,
  ci_names = c("lower_ci", "upper_ci"),
  add_pi = TRUE,
  pi_names = c("lower_pi", "upper_pi"),
  simulate_pi = FALSE,
  sims = 2000,
  uncertain = TRUE,
  ...
)

Arguments

object

A list of trending_model objects.

data

A data.frame containing data to which the model is to be fit and estimates derived.

name

Character vector of length one giving the name to use for the calculated estimate.

alpha

The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived.

add_ci

Should a confidence interval be added to the output. Default TRUE.

ci_names

Names to use for the resulting confidence intervals.

add_pi

Should a prediction interval be added to the output. Default TRUE.

pi_names

Names to use for the resulting prediction intervals.

simulate_pi

Should the prediction intervals for glm models be simulated. If TRUE, default, predict() uses the ciTools::add_pi() function to generate the intervals.

sims

The number of simulations to run when simulating prediction intervals for a glm model.

uncertain

Only used for glm models and when simulate_pi = FALSE. Default TRUE. If FALSE uncertainty in the fitted parameters is ignored when generating the parametric prediction intervals.

...

Not currently used.

Value

A trending_predict_tbl object which is a tibble subclass with one row per model and columns:

  • result: the input data frame with additional estimates and, optionally, confidence and or prediction intervals. NULL if the associated predict method fails.

  • warnings: any warnings generated during prediction.

  • errors: any errors generated during prediction.

Author(s)

Tim Taylor

See Also

predict.trending_model(), predict.trending_fit(), predict.trending_fit_tbl(),

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
negbin_model <- glm_nb_model(y ~ x)
predict(list(poisson_model, negbin_model), dat)
predict(list(pm = poisson_model, nm = negbin_model), dat)

Predict method for trending_fit object

Description

Adds estimated values and associated confidence and/or prediction intervals to trending_fit objects.

Usage

## S3 method for class 'trending_fit'
predict(
  object,
  new_data,
  name = "estimate",
  alpha = 0.05,
  add_ci = TRUE,
  ci_names = c("lower_ci", "upper_ci"),
  add_pi = TRUE,
  pi_names = c("lower_pi", "upper_pi"),
  simulate_pi = FALSE,
  sims = 2000,
  uncertain = TRUE,
  as_tibble = TRUE,
  ...
)

Arguments

object

A trending_fit object.

new_data

A data.frame containing data for which estimates are to be derived. If missing, the model frame from the fit data will be used.

name

Character vector of length one giving the name to use for the calculated estimate.

alpha

The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived.

add_ci

Should a confidence interval be added to the output. Default TRUE.

ci_names

Names to use for the resulting confidence intervals.

add_pi

Should a prediction interval be added to the output. Default TRUE.

pi_names

Names to use for the resulting prediction intervals.

simulate_pi

Should the prediction intervals for glm models be simulated. If TRUE, default, predict() uses the ciTools::add_pi() function to generate the intervals.

sims

The number of simulations to run when simulating prediction intervals for a glm model.

uncertain

Only used for glm models and when simulate_pi = FALSE. Default TRUE. If FALSE uncertainty in the fitted parameters is ignored when generating the parametric prediction intervals.

as_tibble

Should the output be converted to a tibble subclass.

...

Not currently used.

Value

If as_tibble = FALSE, a trending_predict object, which is a list subclass, with entries:

  • result: the input data frame with additional estimates and, optionally, confidence and or prediction intervals. NULL if the associated predict method fails.

  • warnings: any warnings generated during prediction.

  • errors: any errors generated during prediction.

If as_tibble = TRUE, a trending_predict_tbl object which is a tibble subclass with one row per model and columns 'result', 'warnings' and 'errors' with contents as above.

Author(s)

Tim Taylor

See Also

predict.trending_fit_tbl() and predict.trending_model()

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
fitted_poisson <- fit(poisson_model, dat)
predict(fitted_poisson)
predict(fitted_poisson, as_tibble = FALSE)

Predict method for trending_fit_tbl object

Description

Adds estimated values and associated confidence and/or prediction intervals to trending_fit_tbl objects.

Usage

## S3 method for class 'trending_fit_tbl'
predict(
  object,
  new_data,
  name = "estimate",
  alpha = 0.05,
  add_ci = TRUE,
  ci_names = c("lower_ci", "upper_ci"),
  add_pi = TRUE,
  pi_names = c("lower_pi", "upper_pi"),
  simulate_pi = FALSE,
  sims = 2000,
  uncertain = TRUE,
  ...
)

Arguments

object

A trending_fit_tbl object.

new_data

A data.frame containing data for which estimates are to be derived. If missing, the model frame from the fit data will be used.

name

Character vector of length one giving the name to use for the calculated estimate.

alpha

The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived.

add_ci

Should a confidence interval be added to the output. Default TRUE.

ci_names

Names to use for the resulting confidence intervals.

add_pi

Should a prediction interval be added to the output. Default TRUE.

pi_names

Names to use for the resulting prediction intervals.

simulate_pi

Should the prediction intervals for glm models be simulated. If TRUE, default, predict() uses the ciTools::add_pi() function to generate the intervals.

sims

The number of simulations to run when simulating prediction intervals for a glm model.

uncertain

Only used for glm models and when simulate_pi = FALSE. Default TRUE. If FALSE uncertainty in the fitted parameters is ignored when generating the parametric prediction intervals.

...

Not currently used.

Value

a trending_predict_tbl object which is a tibble subclass with one row per model and columns 'result', 'warnings' and 'errors' with contents as above.:

  • result: the input data frame with additional estimates and, optionally, confidence and or prediction intervals. NULL if the associated predict method fails.

  • warnings: any warnings generated during prediction.

  • errors: any errors generated during prediction.

Author(s)

Tim Taylor

See Also

predict.trending_fit(), predict.trending_fit_tbl() and predict.trending_model()

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
negbin_model <- glm_nb_model(y ~ x)
fitted_tbl <- fit(list(poisson_model, negbin_model), dat)

predict(fitted_tbl)

Predict method for trending_model objects

Description

Adds estimated values and associated confidence and/or prediction intervals to data based on trending_model fit.

Usage

## S3 method for class 'trending_model'
predict(
  object,
  data,
  name = "estimate",
  alpha = 0.05,
  add_ci = TRUE,
  ci_names = c("lower_ci", "upper_ci"),
  add_pi = TRUE,
  pi_names = c("lower_pi", "upper_pi"),
  simulate_pi = FALSE,
  sims = 2000,
  uncertain = TRUE,
  as_tibble = TRUE,
  ...
)

Arguments

object

A trending_model object.

data

A data.frame containing data to which the model is to be fit and estimates derived.

name

Character vector of length one giving the name to use for the calculated estimate.

alpha

The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived.

add_ci

Should a confidence interval be added to the output. Default TRUE.

ci_names

Names to use for the resulting confidence intervals.

add_pi

Should a prediction interval be added to the output. Default TRUE.

pi_names

Names to use for the resulting prediction intervals.

simulate_pi

Should the prediction intervals for glm models be simulated. If TRUE, default, predict() uses the ciTools::add_pi() function to generate the intervals.

sims

The number of simulations to run when simulating prediction intervals for a glm model.

uncertain

Only used for glm models and when simulate_pi = FALSE. Default TRUE. If FALSE uncertainty in the fitted parameters is ignored when generating the parametric prediction intervals.

as_tibble

Should the output be converted to a tibble subclass.

...

Not currently used.

Value

If as_tibble = FALSE, a trending_predict object, which is a list subclass, with entries:

  • result: the input data frame with additional estimates and, optionally, confidence and or prediction intervals. NULL if the associated predict method fails.

  • warnings: any warnings generated during prediction.

  • errors: any errors generated during prediction.

If as_tibble = TRUE, a trending_predict_tbl object which is a tibble subclass with one row per model and columns 'result', 'warnings' and 'errors' with contents as above.

Author(s)

Tim Taylor

See Also

predict.trending_fit() and predict.trending_fit_tbl()

Examples

x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
predict(poisson_model, dat)
predict(poisson_model, dat, as_tibble = FALSE)